Identification of a Conserved Calmodulin-Binding Motif in the Sequence of F_0F_1 ATPsynthase Inhibitor Protein

Stefania Contessi,¹ Francis Haraux,² Irene Mavelli,¹ and Giovanna Lippe^{1,3}

Received September 3, 2005; accepted September 25, 2005

The natural inhibitor proteins IF_1 regulate mitochondrial F_0F_1 ATPsynthase in a wide range of species. We characterized the interaction of CaM with purified bovine IF_1 , two bovine IF_1 synthetic peptides, as well as two homologous proteins from yeast, namely IF_1 and STF_1 . Fluorometric analyses showed that bovine and yeast inhibitors bind CaM with a 1:1 stoichiometry in the pH range between 5 and 8 and that CaM-IF₁ interaction is Ca²⁺-dependent. Bovine and yeast IF_1 have intermediate binding affinity for CaM, while the K_d (dissociation constant) of the STF_1 -CaM interaction is slightly higher. Binding studies of CaM with bovine IF_1 synthetic peptides allowed us to identify bovine IF_1 sequence 33–42 as the putative CaM-binding region. Sequence alignment revealed that this region contains a hydrophobic motif for CaM binding, highly conserved in both yeast IF_1 and STF_1 sequences. In addition, the same region in bovine IF_1 has an IQ motif for CaM binding, conserved as an IQ-like motif in yeast IF_1 but not in STF_1 . Based on the pH and Ca²⁺ dependence of IF_1 interaction with CaM, we suggest that the complex can be formed outside mitochondria, where CaM could regulate IF_1 trafficking or additional IF_1 roles not yet clarified.

KEY WORDS: Calmodulin (CaM); inhibitor protein IF1; CaM-binding motif; target sequence.

INTRODUCTION

IF₁ is the natural inhibitor protein of F_0F_1ATP synthase, the enzyme responsible for the aerobic synthesis of cellular ATP from ADP and Pi using energy derived from the transmembrane proton motive force (Boyer, 1997). IF₁ regulation of F_0F_1 in mitochondria occurs by IF₁ binding to the catalytic sector F_1 in a 1:1 ratio; optimal conditions are a pH below 7.0 and the absence of a proton motive force (Green and Grover, 2000). These conditions occur under energy deficiency, i.e. during myocardial ischemia when IF₁ is responsible for the beneficial inhibition of ATPase activity in mammalian heart, as demonstrated both in vitro and in vivo (Di Pancrazio *et al.*, 2004).

Besides the F₀F₁ present in all energy-transducing membranes, several recent reports have shown that at least some F₀F₁ subunits localize in the plasma membrane of endothelial cells (Burwick et al., 2005), hepatic cells (Martinez et al., 2003; Bae et al., 2004) and adipocytes (Kim et al., 2004). IF₁ has also been identified on the surface of endothelial cells where it regulates F_0F_1 catalytic activity (Burwick et al., 2005). Moreover, exogenous IF1 modulated the activity of plasma membrane ATPase of hepatic cells (Martinez et al., 2003). Considering that IF₁ is encoded by a nuclear gene (Walker et al., 1987), these observations suggest that IF₁ is delivered towards both mitochondria and cell surface, at least in some cells. At present, nothing is known about IF1 cytosolic trafficking; the mechanisms and proteins involved in this process represent an interesting field of study.

There is significant similarity between IF_1 in mitochondria from various species, particularly regarding

¹ Department of Biomedical Sciences and Technologies, MATI Centre of Excellence, CIME Centre, University of Udine, Udine, Italy.

² Service de Bioénergétique & CNRS-URA 2096, DBJC, CEA Saclay, Gif-sur-Yvette, France.

³ To whom correspondence should be addressed at Department of Biomedical Sciences and Technologies, University of Udine, Piazzale Kolbe 4, I-33100 Udine, Italy; e-mail: glippe@makek.dstb.uniud.it.

Key to abbreviations: bIF_1 , inhibitor protein from bovine; yIF_1 , inhibitor protein from yeast; STF_1 , product of the STF_1 gene from yeast; CaM, calmodulin; F_1 , soluble isolated F_1 domain; K_d , dissociation constant.

the N-terminal region containing the inhibitory sequence (van Raaij *et al.*, 1996). Bovine IF₁, a basic protein of 84 amino acids, is present in solution in two oligomeric states, tetramer and dimer, favored by pH values above and below 6.5, respectively (Cabezon *et al.*, 2000). In *S. cerevisiae*, two proteins are involved in the regulation of mitochondrial F_0F_1 , namely IF₁ and STF₁ (Hashimoto *et al.*, 1983), although the precise role of STF₁ remains unclear (Venard *et al.*, 2003). Yeast IF₁ and STF₁ are homologous proteins of 63 residues with highly similar sequences (Hashimoto *et al.*, 1984) and each has two oligomeric states, dimer and monomer. While yeast IF₁ is dimeric at low pH and monomeric at high pH, the oligomeric pattern of STF₁ is the contrary (dimerization is favored at high pH) (Cabezon *et al.*, 2002).

IF₁ is a target of calmodulin (CaM), a ubiquitous and highly conserved protein in all eukaryotes that functions as an intracellular calcium sensor (Chin and Means, 2000). Early studies showed that CaM binds IF₁ purified from rat liver in a Ca²⁺-dependent fashion in vitro (Pedersen and Hullihen, 1984; Schwerzmann *et al.*, 1985). Furthermore, CaM prevented IF₁ from inhibiting F₁-ATPase, both free in solution and membrane-bound, without a direct effect on the catalytic activity (Pedersen and Hullihen, 1984).

CaM is a heat-stable protein with four conserved helix-loop-helix structures (EF-hand motifs) that bind a single calcium ion each. CaM interacts with a large number of structurally and functionally unrelated proteins, including metabolic enzymes, structural proteins, transcription factors, ion channels and pumps, and modulates a wide range of cellular processes in response to calcium (Yamniuk and Vogel, 2004). CaM binds its targets through the recognition of specific sequences and tertiary structures. In particular, CaM-binding motifs consist of approximately 20 amino acids and include critical hydrophobic residues in positions 1 and 10 (or 1 and 14); in some instances, they contain an IQ motif, which is represented by the general sequence [F,I, L,V]Qxxx[R, K]xxxx[R, K] (Calmodulin Target Database: http://calcium.uhnres.utoronto.ca; Rhoads and Friedberg, 1997). These motifs can form a basic amphiphilic α -helix common to a number of Ca²⁺-CaM binding proteins (O'Neil and DeGrado, 1990). This structural recognition of CaM may explain its ability to bind IF_1 , considering that the crystallographic structure of bovine IF₁ indicates that each monomer folds into a single cationic amphiphilic α -helix (Cabezon *et al.*, 2001).

In light of this knowledge, the aims of the present study were to characterize the binding interaction between CaM and IF_1 and to identify the CaM-binding motif within the IF_1 primary sequence. Purified bovine IF_1 , two bovine IF_1 synthetic peptides, as well as purified recombinant yeast IF_1 and STF_1 were used to localize the binding motif. Our aim was to obtain information on which to base a detailed topological analysis of the CaM-IF₁ complex and to begin to understand the regulatory roles of this complex.

MATERIALS AND METHODS

Materials

Bovine brain CaM and bee venom melittin were purchased from Sigma. Peptides GSES-GDNVRSSAGAVRDAGGA and FGKREQAEEER-YFRARAKEQLAALK corresponding to residues 1–21 and 22–46, respectively, of bovine IF₁ were purchased from Mimotopes (Clayton Victoria, Australia); these peptides are >95% pure as determined by mass spectrometry. All the other chemicals were commercial products of the purest quality.

Purification and Preparation of Bovine Proteins

Soluble F_1 sector (F_1 -ATPase) was isolated from beef heart mitochondria as in (Horstman and Racker, 1970) and subsequently passed through an XK16/40 Superdex 200pg column equilibrated with 20 mM Tris/HCl pH 8.5, 200 mM NaCl, 1 mM ATP, 1 mM EDTA and 5 mM 2-mercaptoethanol buffer according to (Abrahams *et al.*, 1994). Inhibitor protein IF₁ was purified from the same source as reported in (Gomez-Fernandez and Harris, 1978). The purity of the preparations was determined by SDS-PAGE (Laemmli, 1970). For binding studies, CaM was fluorescently labeled with dansyl chloride as described previously (Vorherr *et al.*, 1990).

Concentrations of F_1 -ATPase, IF_1 and dansylated CaM were assayed by the bicinchoninic acid method as in (Smith *et al.*, 1985).

Expression and Purification of Recombinant Yeast IF₁ and STF₁

Yeast IF₁ was overexpressed and purified as described in (Corvest *et al.*, 2005). The same procedure was developed here to obtain recombinant STF₁. Briefly, the gene encoding STF₁ was amplified by PCR from genomic yeast DNA and the fragment was ligated into plasmid pET-30a(+), which provided an N-terminal (His)6-tag and an enterokinase cleavage site; the resulting plasmid was transformed into *E. coli* BL21 (DE3) by electroporation. Overexpressed STF₁ was purified by

Calmodulin and F₀F₁ATPsynthase Inhibitor Protein

nickel-chelating affinity chromatography as already reported for yeast IF₁ (Corvest *et al.*, 2005). Protein concentration was determined by the bicinchoninic acid method as in (Smith *et al.*, 1985).

Because of the presence of the N-terminal enterokinase cleavage site, the first three amino acids of the recombinant, processed yeast proteins were Ala-Met-Ala, as compared with the natural IF₁ and STF₁, which starts with Ser. However, the inhibitory activities of recombinant IF₁ and STF₁ were the same as that of the natural yeast inhibitors, as previously reported in (Corvest *et al.*, 2005).

IF₁ Binding Assays to Dansylated CaM

Binding of CaM to bovine IF_1 and variants (yeast IF_1 and STF_1; bovine IF_1 peptides) was studied by measuring the changes in fluorescence emission spectrum of dansylated CaM; binding to bee venom melittin served as control (Maulet and Cox, 1983). Fluorescence spectra were recorded in a quartz cuvette (light path, 10 mm), using a Perkin Elmer fluorescence photometer at an excitation wavelength (Ex) of 340 nm and emission wavelength between 400 and 600 nm.

Binding was performed at three different values of pH at 25°C. The reaction contained CaM at 1.4 μ M in a solution of 150 mM NaCl, 100 μ M CaCl₂, and 20 mM pH-specific buffer: Mes pH 5.0, Mops pH 6.5, or Hepes pH 8.0. When indicated, 2 mM EGTA was added to the buffers. Bovine IF₁ and variants were preincubated for several hours at the same pH of the binding assay. After addition of increasing concentrations of bovine IF₁, yeast IF₁, STF₁ (0.28–2.8 μ M) or bovine IF₁ peptides (0.28–14 μ M) to the CaM-containing buffer, the solution was stirred for 10 min before fluorescent measurements.

Stoichiometry of the interaction between CaM and bovine IF₁ was followed by recording fluorescence intensity at $E_m = 490$ nm averaged over 5 s. The molar ratio of binding protein to CaM was observed when the relative fluorescence intensity (F/F_0) no longer increased with addition of bovine IF₁, where F is the fluorescence intensity of the bound complex and F_0 is the intensity of dansylated CaM.

The dissociation constant (K_d) for the interaction between CaM and bovine IF₁ or variants was determined according to the equation reported in (Vorherr *et al.*, 1990). Fluorescence intensity was measured at $E_m = 490$, averaged over 5 s. The fractional degree of saturation of dansylated CaM, α , was calculated from the ratio $(F - F_0)/(F_{max} - F_0)$, where F is the fluorescence intensity of the bound complex, F_{max} is the intensity at saturation, and F_0 is the intensity of dansylated CaM. K_d was obtained by the reciprocal of the slope of the plot of $1/(1 - \alpha)$ versus the total binding protein concentration divided by α .

The effects of IF₁ on the calcium-binding properties of CaM were investigated by measuring changes in relative fluorescence (F/F_0) of dansylated CaM at $E_m = 500$, where F is the measured intensity and F_0 is the intensity without added Ca²⁺. Measurements were performed at 25°C in a buffer containing 20 mM Mops pH 6.5, 150 mM NaCl, 2 mM EGTA and increasing concentrations of CaCl₂ to provide 0.5–4 μ M free Ca²⁺. CaM was present at 1.4 μ M, alone or together with 1.4 μ M bovine IF₁ or yeast IF₁ or STF₁. Free Ca²⁺ concentration was calculated using WEBMAXCLITE v1.15 program (http://www.stanford.edu/~cpatton/maxc.html).

ATPase Assay

The maximal ATPase activity of isolated F1-ATPase was determined by coupling the production of ADP to the oxidation of NADH via the pyruvate kinase and lactic dehydrogenase reactions as previously reported (Contessi et al., 2004). The assay was performed for F_1 -ATPase alone and for F1-ATPase preincubated with CaM, bovine IF₁ or both. The proteins were combined by sequential additions, at 15-min intervals (at 25°C, in 20 mM Tris/HCl pH 6.7, 1 mM MgATP and 100 μ M CaCl₂), to concentrations of 0.56 μ M F₁-ATPase, 5.5 μ M IF₁ and 8–100 μ M CaM, prior to dilution 1:100 in assay buffer. The AT-Pase assay was performed at 37°C in a final volume of 1 ml containing 20 mM Tris/HCl pH 6.7, 1 mM KCl, 3 mM ATP, 4 mM MgCl₂, 1.5 mM phosphoenolpyruvate, 200 μ M NADH, 2 IU pyruvate kinase and 3 IU lactic dehydrogenase. Activity was measured spectrophotometrically at 340 nm on a Perkin-Elmer Vis-UV Spectrometer Lambda14. The CaM used in these experiments was not dansylated.

Sequence Analyses

The search for CaM binding motifs within the inhibitory sequence of IF_1 was performed by visual inspection for patterns of hydrophobic residues. Potential sequences were tested for CaM binding compatibility using Calmodulin Target Database (http://calcium.uhnres.utoronto.ca; Yap *et al.*, 2000), which considers multiple criteria including the net charge of the sequence, level of hydrophilicity, and helical hydrophobic moment. Analysis of conserved residues was performed using CLUSTAL W program, v. 1.8.

Fig. 1. Changes in fluorescence emission spectrum of dansylated calmodulin upon binding to bovine IF₁, in presence and absence of calcium. Dansylated CaM was diluted to 1.4 μ M in 20 mM Mops, 150 mM NaCl and 100 μ M CaCl₂ in the absence (A) or presence (B) of 2 mM EGTA. Then, bovine IF₁ was added to 2 μ M, and the solution was stirred for 10 min at 25°C before measurements. The figure shows the spectra before (*continuous line*) and after (*dotted line*) addition of the saturating concentration of bovine IF₁. The excitation wavelength (Ex) was 340 nm; excitation and emission bandwidths were 10 nm. The spectra are representative of three experiments.

RESULTS

Calmodulin Interaction With Bovine IF₁

The interaction between bovine IF_1 and dansylated CaM was studied using fluorescence spectroscopy. Previous work has shown that the binding of different calmodulin targets were not altered by dansylation (Mori et al., 2000). The maximum in the emission spectrum of dansylated CaM underwent a shift to lower wavelength and an increase in intensity upon complex formation with IF₁ in the presence of calcium, indicating CaM-IF₁ interaction (Fig. 1(A)). In the presence of 2 mM EGTA, the fluorescent intensity of dansylated CaM was less and the peak was sharper; when IF₁ was added, no increase in intensity nor blue shift of the spectrum was observed, showing that binding was Ca²⁺-dependent (Fig. 1(B)). Titration of 1.4 μ M dansylated CaM with increasing concentrations of IF₁ revealed that binding (fluorescence intensity) saturated in the micromolar range in a buffer containing physiologic NaCl concentration (150 mM) and 0.1 mM CaCl₂. The fluorescent change was of similar extent in the absence of NaCl, suggesting a prominent role of hydrophobic interactions in CaM-IF₁ binding (data not shown).

The interaction between dansylated CaM and bovine IF₁ in the presence of calcium was characterized as having a 1:1 stoichiometry. Figure 2 shows that saturation in the relative fluorescence intensity (F/F_0) was reached when

the molar ratio of the two proteins approached unity, although up 2 equivalents of IF₁ were added. Further IF₁ additions up to 10-fold molar excess did not modify F/F_0 ratio (data not shown). The same stoichiometry was observed at pH 5.0 as well as at pH 6.5 and 8.0. These pH values were chosen in consideration of the pH dependence of IF₁ oligomerization (dimer below pH 6.5, tetramer above pH 6.5).

Considering the binding stoichiometry of the IF₁-CaM complex, the equation used by Vorrher et al. (Vorherr et al., 1990) was applied to determine K_d values at pH 5.0, 6.5 and 8.0. In fact, these graphs can be utilized only if a 1:1 complex is formed. Figure 3 shows the plots of $1/(1-\alpha)$ against the total IF₁ concentration divided by α , where α is the fractional degree of saturation of dansylated CaM. As expected, the titration points result in straight lines consistent with a 1:1 binding stoichiometry at all values of pH. Mean values of K_d determined from the reciprocal of the slope were 32.75 nM (SD = 6.70 nM) at pH 5.0, 53.50 nM (SD = 3.53 nM) at pH 6.5, and 109.00 nM (SD = 22.60 nM at pH 8.0. Thus, the affinity of the complex is approximately threefold higher at pH 5.0 (when IF₁ is dimeric) than at pH 8.0 (when it is tetrameric).

The effects of IF₁ on the calcium-binding properties of CaM were determined from the change in fluorescence intensity of dansylated CaM at varying concentrations of free Ca²⁺ (Fig. 4). In the absence of IF₁, the relative

Fig. 2. Calmodulin binding to bovine IF₁ occurs with a 1:1 stoichiometry. Dansylated CaM (dCaM) was diluted to 1.4 μ M in solutions containing 150 mM NaCl and 100 μ M CaCl₂, and 20 mM pH-specific buffer: Mes pH 5.0 (A), Mops pH 6.5 (B), or Hepes pH 8.0 (C). Then, bovine IF₁ was added at 0.28–2.8 μ M and the samples were stirred for 10 min at 25°C before measurements. The excitation wavelength (Ex) was 340 nm and the emission wavelength (Em) was 490 nm. *F* is the fluorescence intensity of the bound complex and F₀ is the intensity of dansylated CaM alone. The plots are representative of three experiments.

fluorescence intensity of CaM increased approximately 10-fold in a sigmoid fashion over a range of 1–3 μ M free Ca²⁺. In the presence of an equimolar concentration of IF₁, calcium titration did not noticeably alter the excursion of CaM fluorescence, indicating that IF₁ has no effect on calcium binding by CaM.

Fig. 3. Determination of the dissociation constant (K_d) for the complex calmodulin-bovine IF₁. Plots of $1/(1 - \alpha)$ against the total IF₁ concentration divided by α are reported at the indicated pH values. Experimental conditions were as in Fig. 2. α is the fractional degree of saturation of CaM. The data are means of at least three independent experiments. IF₁ concentration was expressed in micromolar.

Prevention of Bovine IF₁ Binding to F₁-ATPase by Calmodulin

To assess the effects of CaM on the inhibitory activity of bovine IF₁, we measured the ATPase activity of F₁-ATPase alone and in the presence of one or both proteins. The specific activity of F₁-ATPase at 37°C and pH 6.7 was 31.0 ± 0.3 U/mg, which is the expected value at low pH (Contessi *et al.*, 2004). Addition of 100 μ M CaM had no effect on the maximal ATPase activity (data not shown). In contrast, addition of 10-fold molar excess of IF₁ reduced the ATPase activity to about 10% of initial values (9.2 \pm 0.2 U/mg).

When all three proteins were present, the ability of IF₁ to inhibit F₁-ATPase depended on the temporal order of complex formation (Fig. 5). When the IF₁- F₁-ATPase complex was formed 15 min prior to addition of CaM, IF₁ effectively inhibited F₁-ATPase (to 10% residual AT-Pase activity) and no amount of CaM reversed this inhibition (up to 18-fold molar excess with respect to IF₁). When CaM was preincubated with IF₁ prior to addition of F₁-ATPase, or if it was preincubated with F₁-ATPase prior to addition of IF₁, the inhibitory effects of IF₁ depended on the concentration of CaM. These observations suggest that CaM's ability to neutralize the action of IF₁ is due to its interaction with the free form of the protein. The modulatory effects of CaM on the activity of IF₁ required the presence of calcium (data not shown).

Fig. 4. Ca²⁺-dependence of dansylated calmodulin fluorescence with or without bovine IF₁. Fluorescence intensity of 1.4 μ M dansylated CaM was monitored at Em 500 nm in 20 mM Mops pH 6.5, 150 mM NaCl and 2 mM EGTA, with (*dotted curve*) or without (*solid curve*) 1.4 μ M bovine IF₁ and CaCl₂. Free Ca²⁺ concentration was calculated using WEBMAXCLITE v. 1.15 program and plotted against *F*/*F*₀. F is the fluorescence intensity of the complex and *F*₀ is the intensity of dansylated CaM in the absence of calcium.

Interaction of CaM With Peptides From Bovine IF₁ Inhibitory Sequence and With Yeast IF₁ and STF₁

Based on the observation that CaM neutralized bovine IF₁'s inhibitory activity when added prior to the formation of the IF₁-F₁-ATPase complex but could not reverse the inhibitory complex, we hypothesized that CaM interacts with the N-terminal inhibitory sequence of IF₁. To test this hypothesis, we studied the ability of CaM to bind synthetic peptides corresponding to residues 1–21 and 22–46 of bovine IF₁ (Fig. 6(A)), as well as to yeast IF₁ and STF₁ proteins, considered as natural mutants.

Binding, revealed as a change in fluorescence intensity of dansylated CaM, was clearly demonstrated for bovine IF₁ peptide 22–46 and for yeast IF₁ and STF₁ but not for bovine IF₁ peptide 1–21. Binding of peptide 22–46 and yeast proteins to CaM was Ca²⁺- and pH-dependent, and the effect of pH on binding varied according to the protein studied (Table I). In particular, the K_d of bovine IF₁ peptide 22–46 was lowest at pH 5.0, as previously observed for intact IF₁, and increased more than 10-fold at pH 8.0; compared to intact IF₁ the peptide bound with lower affinity (Table I). Yeast IF₁ bound CaM with affinity similar to that of the bovine protein, but with an opposite pH dependence; STF₁ had a lower affinity for CaM but bound preferentially at low pH. Figure 7 reports the titration plots, obtained as in Fig. 3: Data points of all

Fig. 5. Calmodulin's capacity to neutralize the inhibitory action of bovine IF₁. The ATPase activity of F₁-ATPase was measured in the presence of bovine IF₁ and increasing concentrations of CaM. Values are expressed as percent residual activity, compared to that of F₁-ATPase alone. The three proteins were combined in varying order by sequential additions, separated by 15-min intervals at 25°C with low MgATP (1 mM); preincubation was performed with F₁-ATPase at 0.56 μ M, bovine IF₁ at 5.5 μ M, and CaM at 0–100 μ M. After the final addition and incubation for 15 min at 37°C, samples were diluted 1:100 in a spectrophotometric cuvette to assay the residual ATPase activity at 37°C.

inhibitors at all values of pH tested resulted in straight lines, thus supporting a 1:1 binding stoichiometry, as already observed for bovine IF_1 . As expected, bee venom melittin bound CaM at high affinity and without a major modulation by pH.

Prediction of CaM-Binding Motif

To identify the CaM-binding motif within bovine IF₁ peptide 22–46, we searched for the presence of a CaM-binding motif. We observed that peptide 22-46 contained two instances of hydrophobic amino acids separated by eight residues: one motif was defined by Tyr-33 and Leu-42, while the other was defined by Ala-36 and Leu-45. Moreover, a 1-5-10 hydrophobic motif corresponding to residues 34, 38 and 43 was also found. Alignment of bovine IF₁ peptide 22–46 with yeast IF₁ and STF₁ sequences showed that the only motif whose key bulky residues were conserved was that of sequence 33-42 (bovine numbering) (Fig. 6(B)). These residues are conserved in rat and human IF₁. Analysis of bovine sequence 33-42 using the Calmodulin Target Database confirmed that it is compatible with CaM binding on the basis of a net positive charge, moderate hydrophilicity and high helical hydrophobic moment.

In addition to this hydrophobic motif, we also observed an overlapping IQ motif⁴ with Leu and Gln in

⁴C- to N-term direction of IQ motif makes the CaM-binding site reverse.

Α.

70 80 EIERH KQSIKKLKQS EDDD	60 HHAKEI ERLQKE	LKKHHE N	40 RARAKE QLAA	30 EQAEE ERYFF	20 GG AFGKRE	10 IS SAGAVRDA	GSESGDN
IF1-(1-21)					21 G A	S SAGAVRDA	1 GSESGDN
IF₁-(22-46)		46 AALK	(FRARAKE QL	(REQAEE ERY	22 FGK		
							B.
		↓ EQLAA EQLAH EQLAH	↓ RYFRARAI FFVRQREI YYARQQEI : * :	(REQAEEE (RERATED (RERAKED * * : * * * :	22 FGK FVK FIK	⊧IF1 IF1 STF1	Bovi Yeas Yeas
		↓ EQLAAI EQLAAI	↓ RyfraRai RyfraQsi RyfreK[ti **** ::	KREQAEEE KREQAEEE KREKAEEG	22 FGK FGK FGK	IF1 IF1 1	Bovi Hum Rat

Fig. 6. Sequence analysis for prediction of the calmodulin-binding motif in bovine IF₁. A. Amino acid sequences of bovine IF₁ and synthetic peptides used for binding studies. B. Amino acid sequence alignment of bovine, rat, human, yeast IF₁ and STF₁. Asterisks indicate identical residues and colons denote conserved, as determined using CLUSTAL W (v. 1.8). The residues indicated by arrows form the putative hydrophobic motif, whereas residues marked by boxes form the IQ motif ([F, I, L, V]Qxxx[R, K]xxxx[R, K]).

positions 42 and 41, respectively, and Arg residues in positions 37 and 32 (Fig. 7(B)). This IQ motif is partially conserved in yeast IF₁, although Arg-32 (bovine numbering) is replaced by Phe (IQ-like motif). In contrast, the IQ motif is lost in STF₁. These observations, together with the results from binding studies with bovine and yeast proteins, further support the prediction that the conserved sequence 33–42 of IF₁ is the target of CaM.

Table I. Binding Affinity (K_d) of Calmodulin for Bovine IF1, BovineIF1 Peptide 22–46, Yeast IF1 and STF1 at Different Values of pH in thePresence of Calcium

Protein	pH 5.0	pH 6.5	pH 8.0
Bovine IF ₁	32.8 ± 6.7	53.5 ± 3.5	109.1 ± 22.6
Bovine IF ₁			
Peptide 22-46	140.1 ± 9.6	422.6 ± 34.3	1602.3 ± 57.1
Yeast IF ₁	118.2 ± 17.3	65.1 ± 5.9	31.2 ± 4.7
Yeast STF ₁	213.3 ± 25.2	310.2 ± 1.2	458.9 ± 36.1
Melittin	13.2 ± 0.9	13.8 ± 3.4	16.2 ± 3.9

Note. Values are expressed in units of nanomolar. Data are mean and SD of at least three independent experiments.

DISCUSSION

This study demonstrated that purified bovine and yeast F_1 inhibitory proteins bind calmodulin (CaM) with a 1:1 stoichiometry in the pH range between 5 and 8. In addition, CaM-binding blocks bovine IF₁'s inhibitory activity on F₁-ATPase, in accordance with previous reports (Pedersen and Hullihen, 1984). CaM-IF₁ interaction was Ca²⁺-dependent, and of intermediate affinity, i.e. 10 nM $< K_d < 100$ nM (Persechini and Cronk, 1999).

Binding studies of CaM with synthetic peptides corresponding to part of the inhibitory region of bovine IF_1 and with yeast IF_1 and STF_1 allowed us to predict sequence 33–42 (bovine numbering) as the CaM target. This sequence contains a hydrophobic motif conserved in bovine, yeast, rat and human, supporting the importance of its role in binding. The presence of an overlapping IQ motif in yeast IF_1 but not in STF_1 may explain greater CaM-binding affinity of bovine and yeast IF_1 with respect to STF_1 . The lack of one arginine in the yeast IF_1 sequence gives rise to an "IQ-like" motif that is still suitable for CaM binding (Rhoads and Friedberg, 1997). IQ motif

Fig. 7. Titration plots of bovine IF₁ peptide 22–46, yeast IF₁ and STF₁ at different values of pH in the presence of calcium. Plots of $1/1 - \alpha$ against the total IF₁ concentration divided by α are reported at the indicated pH values for bovine IF₁ peptide 22–46 (A), yeast IF₁ (B) and STF₁ (C). Experimental conditions were as in Fig. 2. α is the fractional degree of saturation of CaM. The data are means of at least three independent experiments.

is conserved in rat and not in human, but the corresponding K_d values for CaM are not yet available. These observations place IF₁ among the CaM-binding proteins whose target sequences contain an IQ motif as well as a hydrophobic motif (Rhoads and Friedberg, 1997). The presence of two overlapping CaM-binding motifs within the same sequence is not unusual (Yamniuk and Vogel, 2004), but its significance remains to be determined.

Relatively high concentrations of H⁺ ions induce conformational changes in CaM targets that make CaMbinding domains more accessible (Huang et al., 1994). This appears to be valid also for bovine IF_1 which has higher affinity for CaM at pH 5.0 than at pH 6.5 or 8.0; at pH 5.0 the protein is in dimeric form (Cabezon et al., 2000). Dimerization of bovine IF1 occurs by formation of an antiparallel α -helical coiled-coil between the C-terminal regions of monomers (Cabezon et al., 2001; Gordon-Smith et al., 2001). This arrangement places the N-terminal sequences containing the CaM-binding motif accessible to solvent and in opposition (Cabezon et al., 2000). When bovine IF_1 forms tetramers at high pH, this motif is less accessible: according to the solution structure of IF₁ residues 35-47 are involved in protein-protein contacts within the tetramer (Cabezon et al., 2000); according to the crystal structure this sequence is partially hidden in the tetramer (Cabezon et al., 2001). Considering that our data show that bovine IF₁ binding to CaM occurs with the same stoichiometry at pH 8 and pH 5, we suggest that CaM binding is able to shift the IF₁ equilibrium towards the dimeric form in which the CaM-binding target becomes accessible. Therefore, the CaM-IF₁ complex could be formed by dimeric IF1 associated with two CaM molecules simultaneously or by one molecule of each protein; both kinds of CaM-IF1 complexes could coexist in solution, as already reported for the complex of bovine IF₁ with F₁-ATPase (Dominguez-Ramirez et al., 2004).

The pattern of pH dependence of IF₁ binding was also observed for bovine IF₁ peptide 22–46, but the peptide had a markedly reduced affinity for CaM at pH 8.0 (K_d was reduced by more than one order of magnitude). Calculation of the titration point of the residues in the region 22–46 suggests that the lateral chains of Glu residues 26, 29, 30, 31, 40 and of Phe22 could be responsible for the affinity decrease at pH 6.5 and 8.0, respectively (data not shown). In particular, the change in charge of the N-terminal Phe22 group appears to strongly affect the interaction with CaM.

Contrary to what has been observed for bovine IF_1 and for its peptide 22-46, a low pH dependence characterizes the binding to CaM of melittin, a canonical high affinity CaM target peptide ($K_{\rm d} \sim 10$ nM). These differences may be due to the different amino acid compositions, since melittin does not contain acidic residues. Moreover, our data show that IF1 contains critical hydrophobic residues for CaM binding in different positions with respect to melittin, i.e. 1 and 10 rather than 1 and 14. The peptides also exhibit different conformational behaviors upon binding with CaM. In fact, although melittin is completely unstructured in solution, it adopts a cationic, amphiphilic α -helical structure on binding to CaM (Mori et al., 2000), as generally occurs when target peptides form a complex with Ca²⁺-CaM. In contrast, using circular dichroism, we did not note any increase in α -helical content upon complex formation between bovine IF₁ peptide 22-46 and CaM in the pH range between 5 and 8 (data not shown). This data is in agreement with observations that the CaM-binding motif is already in helical structure in bovine IF_1 , in accordance with the presence of helical determinants in the peptide backbone at each pH tested (de Chiara et al., 2002). Interestingly, melittin's adoption of an alpha helical structure is also important for its binding to F1-ATPase, which occurs at the same inhibitory site

Calmodulin and F₀F₁ATPsynthase Inhibitor Protein

of IF₁, as recently reported (Gledhill and Walker, 2004). However, a different affinity and pH dependence characterize the binding of melittin to F_1 -ATPase with respect to the IF₁-F₁-ATPase interaction (Gledhill and Walker, 2004; Bullough *et al.*, 1989).

The affinity of yeast IF₁ and STF₁ for CaM are also influenced by pH. The K_d of the STF₁-CaM complex increases with pH, as is true also for bovine IF_1 , while the K_d of the yeast IF₁-CaM interaction decreases with pH. This may be the consequence of the peculiar influence of pH on the oligomerization state of yeast IF₁, which is monomeric at pH 5 and dimeric at pH 8 (Cabezon et al., 2002). On the contrary, STF_1 oligomerizes in an opposite direction (Cabezon et al., 2002). Then, both proteins show a higher affinity for CaM as monomers. If the yeast proteins dimerize through the C-terminal segment homologous to the bovine sequence, this behavior could be due to a wider accessibility for CaM of the monomers, since the putative CaM-binding motif is located close to the dimerization segment (residues 44-84, bovine numbering). Although the dimerization regions in the yeast proteins have not yet been identified, our data are consistent with a direct involvement of CaM-binding motif in dimer formation.

Our data clearly show that the interaction between bovine IF₁ and CaM is regulated by low micromolar Ca^{2+} . Similarly, yeast IF₁ and STF₁ bind CaM in a comparable Ca^{2+} range (data not shown). This suggests that IF₁-CaM binding is at least partially controlled by local changes in intracellular Ca²⁺ concentration, which are particularly high in the microdomains around the mouths of Ca²⁺ channels of the internal Ca²⁺ stores such as mitochondria (Carafoli, 2003). Interestingly, a significant proportion of the total cellular CaM has been found in the cytosol in association with mitochondria (Pardue *et al.*, 1981), the organelle into which IF_1 is transported after synthesis (Walker et al., 1987). The presence of CaM in the mitochondrial matrix, however, seems to be excluded at present, after several controversial results (Hatase et al., 1982; Schnaitman and Greenawalt, 1968; Moriya et al., 1993; Nakazawa, 2001; Milikan and Bolsover, 2000; Lopez et al., 2000). Mitochondrial inorganic phosphate sequesters and precipitates Ca²⁺ in the matrix (Carafoli, 2003), making Ca²⁺ regulation by Ca²⁺binding proteins unlikely. In light of these considerations, the hypothesis of intramitochondrial CaM binding to IF₁ and a consequent regulation of ATPsynthase activity, already proposed (Harris and Das, 1991) appears weak, although intriguing, to explain Ca2+-mediated enzyme activation (Territo et al., 2001). Nonetheless, CaM binding to IF_1 is likely to occur outside mitochondria where IF_1 has been recently documented by confocal microscopy

(Cortes-Hernandez et al., 2005). CaM may regulate IF₁ import into mitochondria or IF1 trafficking towards the cell surface (Burwick et al., 2005; Martinez et al., 2003); CaM may also maintain IF_1 in an inactive form until it is at its site of action (Pedersen and Hullihen, 1984) or modulate additional IF1 functions not yet demonstrated but already suggested (Cortes-Hernandez et al., 2005). Interestingly, multifunctional roles have also been proposed for e subunit (Hong and Pedersen, 2003). In agreement with this hypothesis, our data show that CaM binding to IF₁ occurs at neutral pH, which is observed in the cytosol under aerobic conditions (Porcelli et al., 2005). Moreover, the helical determinants found in the peptide backbone of IF_1 binding region for CaM suggest that the presence of the pre-sequence for import into mitochondria is compatible with CaM binding.

We conclude that the presence of a conserved CaMbinding site in eukaryotic IF₁ sequences, responsible for the intermediate affinity, Ca²⁺-dependent binding with CaM, argues for the physiological relevance of the complex. Limited proteolysis experiments are underway in order to describe the topology of the IF₁-CaM complex. *In vivo* analyses are required to clarify the localization and the biological roles of this interaction.

ACKNOWLEDGMENTS

We thank Prof A. Vianello A. and his group (Department of Biology and Agro-industrial Economics, Section of Plant Biology, University of Udine, Via Cotonificio 108, I-33100 Udine, Italy) for use of the spectrofluorometer and Dr F. Fogolari (Department of Biomedical Sciences and Technologies and MATI Centre of Excellence, University of Udine, Piazzale Kolbe 4, I-33100 Udine, Italy) for computational peptide analysis. This work is supported by MIUR, PRIN 2004.

REFERENCES

- Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994). *Nature* 370, 621–628.
- Bae, T. J., Kim, M. S., Kim, J. W., Kim, B. W., Choo, H. J., Lee, J. W., Kim, K. B., Lee, C. S., Kim, J. H., Chang, S. Y., Kang, C. Y., Lee, S. W., and Ko, Y. G. (2004). *Proteomics* 4, 3536–3548.
- Boyer, P. D. (1997). Annu. Rev. Biochem. 66, 717–749.
- Bullough, D. A., Ceccarelli, E. A., Roise, D., and Allison, W. S. (1989). Biochim. Biophys. Acta 975, 377–383.
- Burwick, N. R., Wahl, M. L., Fang, J., Zhong, Z., Moser, T. L., Li, B., Capaldi, R. A., Kenan, D. J., and Pizzo, S. V. (2005). *J. Biol. Chem.* 280, 1740–1745.
- Cabezon, E., Butler, P. J., Runswick, M. J., and Walker, J. E. (2000). J. Biol. Chem. 275, 25460–25464.
- Cabezon, E., Runswick, M. J., Leslie, A. G. W., and Walker, J. E. (2001). *EMBO J.* **20**, 6990–6996.

- Cabezon, E., Butler, P. J., Runswick, M. J., Carbajo, R. J., and Walker, J. E. (2002). J. Biol. Chem. 277, 41334–41341.
- Carafoli, E. (2003). Trends Biochem. Sci. 28, 175-181.
- Chin, D., and Means, A. R. (2000). Trends Cell. Biol. 10, 322–328.
- Contessi, S., Metelli, G., Mavelli, I., and Lippe, G. (2004). *Biochem. Pharmacol.* **67**, 1843–1851.
- de Chiara, C., Nicastro, G., Spisni, A., Zanotti, F., Cocco, T., and Papa, S. (2002). *Peptides* 23, 2127–2141.
- Cortes-Hernandez, P., Dominguez-Ramirez, L., Estrada-Bernal, A., Montes-Sanchez, D. G., Zentella-Dehesa, A., de Gomez-Puyou, M.T., Gomez-Puyou, A., and Garcia, J. J. (2005). *Biochem, Biophys. Res. Commun.* 330, 844–849.
- Corvest, V., Sigalat, C., Venare, R., Falson, P., Mueller, D. M., and Haraux, F. (2005). J. Biol. Chem. 280, 9927–9936.
- Di Pancrazio, F., Mavelli, I., Isola, M., Losano, G., Pagliaro, P., Harris, D. A., and Lippe, G. (2004). *Biochim. Biophys. Acta* 1659, 52–62.
- Dominguez-Ramirez, L., Garza-Ramos, G., Najera, H., Mendoza-Hernandez, G., Gomez-Puyou, A., and de Gomez-Puyou, M. T. (2004). J. Bioenerg. Biomembr. 36, 503–513.
- Gledhill, J. R., and Walker, J. E. (2004). Biochem. J. 386, 591-598.
- Gomez-Fernandez, J. C., and Harris, D. A. (1978). *Biochem. J.* 176, 967–975.
- Gordon-Smith, D. J., Carbajo, R. J., Yang, J. C., Videler, H., Runswick, M. J., Walker, J. E., and Neuhaus, D. (2001). *J. Mol. Biol.* **308**, 325–339.
- Green, D. W., and Grover, G. J. (2000). *Biochim. Biophys. Acta* 1458, 343–355.
- Harris, D. A., and Das, A. M. (1991). Biochem. J. 280, 561-573.
- Hashimoto, T., Yoshida, Y., and Tagawa, K. (1983). J. Biochem. (Tokyo) 94, 715–720.
- Hashimoto, T., Yoshida, Y., and Tagawa, K. (1984). J. Biochem. (Tokyo) **95**, 131–136.
- Hatase, O., Tokuda, M., Itano, T., Matsui, H., and Doi, A. (1982). *Biochem. Biophys. Res. Commun.* **104**, 673–679.
- Hong, S., and Pedersen, P. L. (2003). Proteins 51, 155-161.
- Horstman, L. L., and Racker, E. (1970). J. Biol. Chem. 245, 1336-1344.
- Huang, S., Carlson, G. M., and Cheung, W. Y. (1994). J. Biol. Chem. **269**, 7631–7638.
- Kim, B. W., Choo, H. J., Lee, J. W., Kim, J. H., and Ko, Y. G. (2004). *Exp. Mol. Med.* 36, 476–485.
- Laemmli, U. K. (1970). Nature 277, 680-685.
- Lopez, M. F., Kristal, B. S., Chernokalskaya, E., Lazarev, A., Shestopalov, A. I., Bogdanova, A., and Robinson, M. (2000). *Electrophoresis* 21, 3427–3440.

- Martinez, L. O., Jacquet, S., Esteve, J. P., Rolland, C., Cabezon, E., Champagne, E., Pineau, T., Georgeaud, V., Walker, J. E., Terce, F., Collet, X., Perret, B., and Barbaras, R. (2003). *Nature* 421, 75–79.
- Maulet, Y., and Cox, J. A. (1983). Biochemistry 22, 5680-5686.
- Milikan, J. M., and Bolsover, S. R. (2000). Pflugers. Arch. 439, 394-400.
- Mori, M., Konno, T., Ozawa, T., Murata, M., Imoto, K., and Nagayama, K. (2000). *Biochemistry* **39**, 1316–1323.
- Moriya, M., Katagiri, C., and Yagi, K. (1993). Cell Tissue Res. 271, 441-451.
- Nakazawa, K. (2001). Heart Res. 151, 133-140.
- O'Neil, K. T., and DeGrado, W. F. (1990). Trends Biochem. Sci. 15, 59–64. Review.
- Pardue, R. L., Kaetzel, M. A., Hahn, S. H., Brinkley, B. R., and Dedman, J. R. (1981). *Cell* 23, 533–542.
- Pedersen, P. L., and Hullihen, J. (1984). J. Biol. Chem. 259, 15148– 15153.
- Persechini, A., and Cronk, B. (1999). J. Biol. Chem. 274, 6827-6830.
- Porcelli, A. M., Ghelli, A., Zanna, C., Pinton, P., Rizzuto, R., and Rugolo, M. (2005). Biochem. Biophys. Res. Commun. 326, 799–804.
- Rhoads, A. R., and Friedberg, F. (1997). FASEB J. 11, 331-340. Review.
- Schnaitman, C., and Greenawalt, J. W. (1968). Enzymatic properties of the inner and outer membranes of rat liver mitochondria. J. Cell Biol. 38, 158–175.
- Schwerzmann, K., Muller, M., and Carafoli, E. (1985). Biochim. Biophys. Acta. 816, 63–67.
- Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., and Klenk, D. C. (1985). *Anal. Biochem.* **150**, 76–85.
- Territo, P. R., French, S. A., Dunleavy, M. C., Evans, F. J., and Balaban, R. S. (2001). J. Biol. Chem. 276, 2586–2599.
- van Raaij, M. J., Orriss, G. L., Montgomery, M. G., Runswick, M. J., Fearnley, I. M., Skehel, J. M., and Walker, J. E. (1996). *Biochemistry* 35, 15618–15625.
- Venard, R., Brethes, D., Giraud, M. F., Vaillier, J., Velours, J., and Haraux, F. (2003). *Biochemistry* 42, 7626–7636.
- Vorherr, T., James, P., Krebs, J., Enyedi, A., McCormick, D. J., Penniston, J. T., and Carafoli, E. (1990). *Biochemistry* 29, 355– 365.
- Walker, J. E., Gay, N. J., Powell, S. J., Kostina, M., and Dyer, M. R. (1987). *Biochemistry* 26, 8613–8619.
- Yamniuk, A. P., and Vogel, H. J. (2004). Mol. Biotechnol. 27, 33–57. Review.
- Yap, K. L., Kim, J., Truong, K., Sherman, M., Yuan, T., and Ikuram, M. (2000). J. Struct. Funct. Genomics. 1, 8–14.